资源类型

期刊论文 78

会议视频 1

年份

2023 4

2022 10

2021 12

2020 5

2019 10

2018 4

2017 9

2016 1

2015 2

2014 1

2013 4

2011 6

2010 2

2008 3

2007 2

2005 1

2002 2

2000 1

展开 ︾

关键词

耐久性 7

混凝土 2

B级钢 1

三维细观模拟 1

人工气候 1

信息化 1

储能 1

公路桥梁 1

养护管理 1

再生混凝土 1

凝土结构 1

分类 1

劈拉试验 1

劣化机理 1

动态响应 1

原生混凝土 1

发展趋势 1

可持续性 1

可搜索加密;云存储;密钥聚合加密;数据共享 1

展开 ︾

检索范围:

排序: 展示方式:

A new systematic firefly algorithm for forecasting the durability of reinforced recycled aggregate concrete

Wafaa Mohamed SHABAN; Khalid ELBAZ; Mohamed AMIN; Ayat gamal ASHOUR

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 329-346 doi: 10.1007/s11709-022-0801-9

摘要: This study presents a new systematic algorithm to optimize the durability of reinforced recycled aggregate concrete. The proposed algorithm integrates machine learning with a new version of the firefly algorithm called chaotic based firefly algorithm (CFA) to evolve a rational and efficient predictive model. The CFA optimizer is augmented with chaotic maps and Lévy flight to improve the firefly performance in forecasting the chloride penetrability of strengthened recycled aggregate concrete (RAC). A comprehensive and credible database of distinctive chloride migration coefficient results is used to establish the developed algorithm. A dataset composite of nine effective parameters, including concrete components and fundamental characteristics of recycled aggregate (RA), is used as input to predict the migration coefficient of strengthened RAC as output. k-fold cross validation algorithm is utilized to validate the hybrid algorithm. Three numerical benchmark analyses are applied to prove the superiority and applicability of the CFA algorithm in predicting chloride penetrability. Results show that the developed CFA approach significantly outperforms the firefly algorithm on almost tested functions and demonstrates powerful prediction. In addition, the proposed strategy can be an active tool to recognize the contradictions in the experimental results and can be especially beneficial for assessing the chloride resistance of RAC.

关键词: chloride penetrability     recycled aggregate concrete     machine learning     concrete components     durability    

Laboratory assessment of Alaska aggregates using Micro-Deval test

Jenny LIU,Sheng ZHAO,Anthony MULLIN

《结构与土木工程前沿(英文)》 2017年 第11卷 第1期   页码 27-34 doi: 10.1007/s11709-016-0359-5

摘要: Aggregates suitable for use in asphalt concrete (AC) pavement construction must meet durability criteria. Thus, it is critical to select appropriate tests to properly characterize aggregate durability. In Alaska, durability tests currently being used for aggregates in AC pavement include Los Angeles (LA) abrasion test, sulfate soundness test and Washington degradation test. However, there have long been concerns arising over Washington degradation test used as an acceptance tool, motivating pavement practitioners to seek more suitable alternatives. This paper presents a study to investigate the feasibility of using Micro-Deval test, commonly used in other states, to evaluate the durability of Alaskan aggregates in AC pavement as well as its potential to replace Washington degradation test. Micro-Deval test, Washington degradation test and other tests currently specified in Alaska were conducted on aggregates from 16 batches representing statewide sources. Based on the testing results, it is found that using Micro-Deval test for durability assessment of Alaska aggregates was feasible and reproducible, and a high potential was revealed to use Micro-Deval test to replace Washington degradation test in Alaska. It is recommended that Micro-Deval test be considered as an additional test for a certain period, but in the long run should be used along with current LA abrasion and sulfate soundness tests to provide a more desirable durability assessment of Alaska aggregates used in AC pavement.

关键词: aggregate durability     Washington degradation test     Micro-Deval test    

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

《能源前沿(英文)》 2019年 第13卷 第2期   页码 325-338 doi: 10.1007/s11708-019-0618-y

摘要: Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.

关键词: PEM fuel cell     gas diffusion electrode(GDE)     gas diffusion layer(GDL)     membrane electrode assembly     durability     fuel cell catalyst    

Experimental study on behavior of mortar-aggregate interface after elevated temperatures

Wan WANG, Jianzhuang XIAO, Shiying XU, Chunhui WANG

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 158-168 doi: 10.1007/s11709-016-0374-6

摘要: A push-out test program was designed and conducted to study the meso-scale behavior of mortar-aggregate interface for concrete after elevated temperatures ranging from 20°C to 600°C with the concept of modeled concrete (MC) and modeled recycled aggregate concrete (MRAC). The MCs and MRACs were designed with different strength grade of mortar and were exposed to different elevated temperatures. Following that the specimens were cooled to room temperature and push-out tests were conducted. Failure process and mechanical behaviors were analyzed based on failure modes, residual load-displacement curves, residual peak loads and peak displacements. It is found that failure modes significantly depended on specimen type, the elevated temperature and the strength grade of mortar. For MC, major cracks started to propagate along the initial cracks caused by elevated temperatures at about 80% of residual peak load. For MRAC, the cracks appeared at a lower level of load with the increasing elevated temperatures. The cracks connected with each other, formed a failure face and the specimens were split into several parts suddenly when reaching the residual peak load. Residual load-displacement curves of different specimens had similarities in shape. Besides, effect of temperatures and strength grade of mortar on residual peak load and peak displacement were analyzed. For MC and MRAC with higher strength of new hardened mortar, the residual peak load kept constant when the temperature is lower than 400°C and dropped by 43.5% on average at 600°C. For MRAC with lower strength of new hardened mortar, the residual peak load began to reduce when the temperatures exceeded 200°C and reduced by 27.4% and 60.8% respectively at 400°C and 600°C. The properties of recycled aggregate concrete (RAC) may be more sensitive to elevated temperatures than those of natural aggregate concrete (NAC) due to the fact that the interfacial properties of RAC are lower than those of NAC, and are deteriorated at lower temperatures.

关键词: mortar-aggregate interface     push-out test     elevated temperatures     modeled concrete (MC)     modeled recycled aggregate concrete (MRAC)    

Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1415-1425 doi: 10.1007/s11709-021-0786-9

摘要: To study the behavior of coral aggregate concrete (CAC) column under axial and eccentric compression, the compression behavior of CAC column with different types of steel and initial eccentricity (ei) were tested, and the deformation behavior and ultimate bearing capacity (Nu) were studied. The results showed that as the ei increases, the Nu of CAC column decreases nonlinearly. Besides, the steel corrosion in CAC column is severe, which reduces the steel section and steel strength, and decreases the Nu of CAC column. The durability of CAC structures can be improved by using new organic coated steel. Considering the influence of steel corrosion and interfacial bond deterioration, the calculation models of Nu under axial and eccentric compression were presented.

关键词: coral aggregate concrete column     axial compression     eccentric compression     steel corrosion     calculation model    

Chloride ingress and macro-cell corrosion of steel in concrete made with recycled brick aggregate

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1358-1371 doi: 10.1007/s11709-021-0769-x

摘要: An investigation on chloride ingress and macro-cell corrosion of steel bars in concrete made with recycled brick aggregate (RBA) was carried out. As control cases, virgin brick aggregate (BA) and stone aggregate (SA) were also investigated. Both cylindrical and cracked prism specimens were studied for 16 different cases. The prism specimens were made with a segmented steel bar providing electrical connection from outside of the specimens to measure macro-cell corrosion current continuously under seawater splash exposure for a period of 30 d using a data logger. Cylindrical specimens were submerged in 3% NaCl solution at a temperature of 40°C to investigate chloride ingress in concrete made with RBA, BA, and SA after 120 and 180 d. Half-cell potential, corrosion area, and depths of corrosion were also investigated. The chloride ingress as well as corrosion of steel bars in concrete made with the different types of aggregate is ordered as RBA > BA > SA.

关键词: brick aggregate     chloride ingress     macro-cell corrosion     recycled brick aggregate    

Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1400-1414 doi: 10.1007/s11709-021-0779-8

摘要: Aggregates are the biggest contributor to concrete volume and are a crucial parameter in dictating its mechanical properties. As such, a detailed experimental investigation was carried out to evaluate the effect of sand-to-aggregate volume ratio (s/a) on the mechanical properties of concrete utilizing both destructive and non-destructive testing (employing UPV (ultrasonic pulse velocity) measurements). For investigation, standard cylindrical concrete samples were made with different s/a (0.36, 0.40, 0.44, 0.48, 0.52, and 0.56), cement content (340 and 450 kg/m3), water-to-cement ratio (0.45 and 0.50), and maximum aggregate size (12 and 19 mm). The effect of these design parameters on the 7, 14, and 28 d compressive strength, tensile strength, elastic modulus, and UPV of concrete were assessed. The careful analysis demonstrates that aggregate proportions and size need to be optimized for formulating mix designs; optimum ratios of s/a were found to be 0.40 and 0.44 for the maximum aggregate size of 12 and 19 mm, respectively, irrespective of the W/C (water-to-cement) and cement content.

关键词: aggregates     non-destructive testing     sand-to-aggregate volume ratio (s/a)     maximum aggregate size (MAS)    

Cement mortar with enhanced flexural strength and durability-related properties using

Qing LIU, Renjun LIU, Qiao WANG, Rui LIANG, Zongjin LI, Guoxing SUN

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 99-108 doi: 10.1007/s11709-021-0721-0

摘要: The low flexural strength and high brittleness of cementitious materials impair their service life in building structures. In this study, we developed a new polymer-modified mortar by polymerization of acrylamide (AM) monomers during the cement setting, which enhanced the flexural and durable performances of mortars. The mechanical properties, micro-and-pore structures, hydrated products, interactions between cement hydrates and polyacrylamide (PAM), and durability-related properties of the mortars were investigated comprehensively. Mortars with 5% PAM exhibited the best performance in terms of flexural strength among all the mixtures. The mechanical strength of cement pastes modified by polymerization of AM monomers was significantly superior to those modified by PAM. The chemical interactions between the polymer molecules and cement hydrates together with the formation of polymer films glued the cement hydrates and polymers and resulted in an interpenetrating network structure, which strengthened the flexural strength. Reductions in porosity and calcium hydroxide content and improvement in capillary water absorption were achieved with the addition of PAM. Finally, the chloride resistance was significantly enhanced with the incorporation of PAM.

关键词: acrylamide     in situ polymerization     interaction     porosity     durability    

additives and permeability reducing admixtures having different action mechanisms on mechanical and durability

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1277-1291 doi: 10.1007/s11709-021-1752-2

摘要: In this paper, the effect of usage of the permeability reducing admixture (PRA) having different action mechanisms on hardened state properties of cementitious systems containing mineral additives is examined. For this aim, three commercial PRAs were used during investigation. The effective parameters in the first and third PRAs were air-entraining and high-rate air-entraining, respectively. The second one contained the insoluble calcium carbonate residue and had a small amount of the air-entraining property. Mortar mixes with binary and ternary cementitious systems were prepared by partially replacing cement with fly ash and metakaolin. The hardened state properties of mortar mixtures such as compressive strength, ultrasonic pulse velocity, water absorption, drying shrinkage and freeze–thaw resistance were investigated. The ternary cement-based mixture having both fly ash and metakaolin was selected as the most successful mineral-additive bearing mix in regard to hardened state properties. In this sense, PRA-B, with both insoluble residues and a small amount of air-entraining properties, showed the best performance among the mixtures containing PRA. The combined use of mineral additive and PRA had a more positive effect on the properties of the mixes.

关键词: cementitious system     mineral additive     permeability reducing admixture     mechanical properties     durability performance    

Punching shear behavior of recycled aggregate concrete slabs with and without steel fibres

Jianzhuang XIAO, Wan WANG, Zhengjiu ZHOU, Mathews M. TAWANA

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 725-740 doi: 10.1007/s11709-018-0510-6

摘要: A study on the punching shear behavior of 8 slabs with recycled aggregate concrete (RAC) was carried out. The two main factors considered were the recycled coarse aggregate (RCA) replacement percentage and the steel fibre volumetric ratio. The failure pattern, load-displacement curves, energy consumption and the punching shear capacity of the slabs were intensively investigated. It was concluded that the punching shear capacity, ductility and energy consumption decreased with the increase of RCA replacement percentage. Research findings indicated that the incorporation of steel fibres could not only improve the energy dissipation capacity and the punching shear capacity of the slab, but also effectively improve the integrity of the slab tension surface and thereby changing the trend from typical punching failure pattern to bending-punching failure pattern. On the basis of the test, the punching shear capacity formula of RAC slabs with and without steel fibres was proposed and discussed.

关键词: recycled aggregate concrete     steel fibres     slab     punching shear     recycled coarse aggregates replacement percentage    

Quantification of coarse aggregate shape in concrete

Xianglin GU,Yvonne TRAN,Li HONG

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 308-321 doi: 10.1007/s11709-014-0266-6

摘要: The objective of this study is to choose indices for the characterization of aggregate form and angularity for large scale application. For this purpose, several parameters for aggregate form and angularity featured in previous research are presented. Then, based on these established parameters, 200 coarse quartzite aggregates are analyzed herein by using image processing technology. This paper also analyzes the statistical distributions of parameters for aggregate form and angularity as well as the correlation between form and angularity parameters. It was determined that the parameters for form or angularity of coarse aggregates could be fitted by either normal distribution or log-normal distribution at a 95% confidence level. Some of the form parameters were influenced by changes in angularity characteristics, while aspect ratio and angularity using outline slope, area ratio and radius angularity index, and aspect ratio and angularity index were independent of each other, respectively; and consequently, the independent parameters could be used to quantify the aggregate form and angularity for the purpose to study the influence of aggregate shape on the mechanical behavior of concrete. Furthermore, results from this study’s in-depth investigations showed that the aspect ratio and the angularity index can further understanding of the effects of coarse aggregates form and angularity on concrete mechanical properties, respectively. Finally, coarse aggregates with the same content, type and surfaces texture, but different aspect ratios and angularity indices were used to study the influence of coarse aggregate form and angularity on the behavior of concrete. It was revealed that the splitting tensile strength of concrete increased with increases in the aspect ratio or angularity index of coarse aggregates.

关键词: coarse aggregate     form     angularity     digital image analysis     statistical distribution     splitting tensile strength    

Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregate

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 754-772 doi: 10.1007/s11709-021-0711-2

摘要: Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete (SSRAC) are analyzed by a series of axial compression tests. Two different types of fine (coarse) aggregates are considered: sea sand and river sand (natural and recycled coarse aggregates). Variations in SSRAC properties at different ages are investigated. A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete. Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content. The elastic modulus of SSRAC increases with age. However, the Poisson’s ratio reduces after 2 years. Typical axial stress–strain curves of SSRAC vary with age. Generally, the effect of coarse aggregates on the axial deformation of SSRAC is clear; however, the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand. The aggregate type changes the crack characteristics and propagation of SSRAC. Finally, an analytical expression is suggested to construct the long-term stress–strain curve of SSRAC.

关键词: sea sand recycled aggregate concrete     recycled coarse aggregate replacement percentage     sea sand chloride ion content     long-term mechanical properties     stress–strain curve    

Understanding the behavior of recycled aggregate concrete by using thermogravimetric analysis

Subhasis PRADHAN, Shailendra KUMAR, Sudhirkumar V. BARAI

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1561-1572 doi: 10.1007/s11709-020-0640-5

摘要: The physio-chemical changes in concrete mixes due to different coarse aggregate (natural coarse aggregate and recycled coarse aggregate (RCA)) and mix design methods (conventional method and Particle Packing Method (PPM)) are studied using thermogravimetric analysis of the hydrated cement paste. A method is proposed to estimate the degree of hydration ( ) from chemically bound water ( ). The PPM mix designed concrete mixes exhibit lower . Recycled aggregate concrete (RAC) mixes exhibit higher and after 7 d of curing, contrary to that after 28 and 90 d. The chemically bound water at infinite time ( ) of RAC mixes are lower than the respective conventional concrete mixes. The lower , Ca(OH) bound water, free Ca(OH) content and FT-IR analysis substantiate the use of pozzolanic cement in the parent concrete of RCA. The compressive strength of concrete and cannot be correlated for concrete mixes with different aggregate type and mix design method as the present study confirms that the degree of hydration is not the only parameter which governs the macro-mechanical properties of concrete. In this regard, further study on the influence of interfacial transition zone, voids content and aggregate quality on macro-mechanical properties of concrete is needed.

关键词: recycled aggregate concrete     Particle Packing Method     thermogravimetric analysis     chemically bound water     degree of hydration     Fourier transform infrared spectroscopy    

Comments on “Prediction on CO uptake of recycled aggregate concrete”, Frontiers of Structural and Civil

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1504-1506 doi: 10.1007/s11709-021-0782-0

摘要: A methodology to compute the CO2 uptake of recycled aggregate concrete is proposed in the commented paper. Besides some typos in several formulas, it is found that the approach to estimate the specific surface area of the recycled aggregates is not correct. This issue has some impact in the conclusions of the commented paper. Therefore, aiming to improve the understanding, accuracy and findings of the commented paper, an alternative approach to estimate the specific surface area of the recycled aggregates, as well as an erratum of the formulas and revised conclusions are suggested.

Experimental investigation on freeze−thaw durability of polymer concrete

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1038-1046 doi: 10.1007/s11709-021-0748-2

摘要: Assessing the durability of concrete is of prime importance to provide an adequate service life and reduce the repairing cost of structures. Freeze–thaw is one such test that indicates the ability of concrete to last a long time without a significant loss in its performance. In this study, the freeze–thaw resistance of polymer concrete containing different polymer contents was explored and compared to various conventional cement concretes. Concretes’ fresh and hardened properties were assessed for their workability, air content, and compressive strength. The mass loss, length change, dynamic modulus of elasticity, and residual compressive strength were determined for all types of concretes subjected to freeze–thaw cycles according to ASTM C666-procedure A. Results showed that polymer concrete (PC) specimens prepared with higher dosages of polymer contents possessed better freeze–thaw durability compared to other specimens. This high durability performance of PCs is mainly due to their impermeable microstructures, absence of water in their structure, and the high bond strength between aggregates and a polymer binder. It is also indicated that the performance of high-strength concrete containing air-entraining admixture is comparable with PC having optimum polymer content in terms of residual compressive strength, dynamic modulus of elasticity, mass loss, and length change.

关键词: durability test     freeze-thaw resistance     polymer concrete     residual compressive strength     ASTM C666-15    

标题 作者 时间 类型 操作

A new systematic firefly algorithm for forecasting the durability of reinforced recycled aggregate concrete

Wafaa Mohamed SHABAN; Khalid ELBAZ; Mohamed AMIN; Ayat gamal ASHOUR

期刊论文

Laboratory assessment of Alaska aggregates using Micro-Deval test

Jenny LIU,Sheng ZHAO,Anthony MULLIN

期刊论文

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

期刊论文

Experimental study on behavior of mortar-aggregate interface after elevated temperatures

Wan WANG, Jianzhuang XIAO, Shiying XU, Chunhui WANG

期刊论文

Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete

期刊论文

Chloride ingress and macro-cell corrosion of steel in concrete made with recycled brick aggregate

期刊论文

Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio

期刊论文

Cement mortar with enhanced flexural strength and durability-related properties using

Qing LIU, Renjun LIU, Qiao WANG, Rui LIANG, Zongjin LI, Guoxing SUN

期刊论文

additives and permeability reducing admixtures having different action mechanisms on mechanical and durability

期刊论文

Punching shear behavior of recycled aggregate concrete slabs with and without steel fibres

Jianzhuang XIAO, Wan WANG, Zhengjiu ZHOU, Mathews M. TAWANA

期刊论文

Quantification of coarse aggregate shape in concrete

Xianglin GU,Yvonne TRAN,Li HONG

期刊论文

Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregate

期刊论文

Understanding the behavior of recycled aggregate concrete by using thermogravimetric analysis

Subhasis PRADHAN, Shailendra KUMAR, Sudhirkumar V. BARAI

期刊论文

Comments on “Prediction on CO uptake of recycled aggregate concrete”, Frontiers of Structural and Civil

期刊论文

Experimental investigation on freeze−thaw durability of polymer concrete

期刊论文